Abstract

Over 12% of the world’s health resources are spent on treating diabetes, as high blood glucose is the third cause of mortality worldwide. Insulin resistance is the basis of the most common form of diabetes: type 2 diabetes. Recent animal studies report successful attempts at reversing type 2 diabetes by the administering of the NAD+ precursor nicotinamide mononucleotide (NMN). However, the current high price of this molecule urges for more efficient and cost-effective production methods. This work proposes a method for purifying NMN by Size Exclusion Chromatography (SEC) on silica with a covalently attached coating of poly(2-hydroxyethyl aspartamide) (PolyHEA) stationary phase using an isocratic elution with a denaturing mobile phase (50 mM formic acid) from a complex molecular mixture such as a fermentation broth. The eluted peaks were identified by UV-Vis analysis and confirmed with ESI+ mass spectrometry and a HPLC reversed-phase method. The proposed SEC method is simple, patent-free, directly applicable for industrial production with a minimum scale up effort. The need for multiple chromatographic steps is eliminated and the lysate filtration and clarification steps are simplified. Substantial reduction in NMN production costs and increased purity of NMN to the level suitable for usage in humans are expected.

Highlights

  • In the past, nicotinamide mononucleotide (NMN) was prepared by incubation of diphosphopyridine nucleotide with potato pyrophosphatase[21] or from nicotinamide by extracts of acetone-powered human erythrocytes[22]

  • Our attempt to reproduce the previously reported ion exchange method[23] of NMN separation from the bacterial lysate did not produce the expected results, probably because of the high nicotinamide (NAM) content of our bacterial lysate, as growing media was supplemented with 1% NAM as substrate for Nicotinamide phosphoribosyl transferase (Nampt)

  • NAM and NMN co-eluted in the Dowex Cl− Ion Exchange Chromatography (IEC) column and co-precipitated in acetone together with high amounts of salts

Read more

Summary

Introduction

NMN was prepared by incubation of diphosphopyridine nucleotide with potato pyrophosphatase[21] or from nicotinamide by extracts of acetone-powered human erythrocytes[22]. These methods produced low quantities of NMN. Nowadays NMN is obtained by microbial biotechnology techniques. To reduce the high cost of NMN and to improve on the available purity requires innovation and optimisation of the current production

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call