Abstract

Computing the transitive closure in directed graphs is a fundamental graph problem. We consider the more restricted problem of computing the number of nodes reachable from every node and the size of the transitive closure. The fastest known transitive closure algorithms run inO(min{mn,n2.38}) time, wherenis the number of nodes andmthe number of edges in the graph. We present anO(m) time randomized (Monte Carlo) algorithm that estimates, with small relative error, the sizes of all reachability sets and the transitive closure. Another ramification of our estimation scheme is a Õ(m) time algorithm for estimating sizes of neighborhoods in directed graphs with nonnegative edge lengths. Our size-estimation algorithms are much faster than performing the respective explicit computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.