Abstract

We present a systematic study of the mechanical properties of different Cu, Ta/Cu and Ta/Cu/Ta films systems. By using a novel synchrotron-based tensile testing technique isothermal stress–strain curves for films as thin as 20 nm were obtained for the first time. In addition, freestanding Cu films with a minimum thickness of 80 nm were tested by a bulge testing technique. The effects of different surface and interface conditions, film thickness and grain size were investigated over a range of film thickness up to 1 μm. It is found that the plastic response scales strongly with film thickness but the effect of the interfacial structure is smaller than expected. By considering the complete grain size distribution and a change in deformation mechanism from full to partial dislocations in the smallest grains, the scaling behavior of all film systems can be described correctly by a modified dislocation source model. The nucleation of dissociated dislocations at the grain boundaries also explains the strongly reduced strain hardening for these films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call