Abstract
Size effects make traditional bending theories infeasible in analyzing the springback behavior of H80 foils in the similarity bending experiment. It is observed that there is a certain critical thickness value, which divides the change trend of springback amount of foils into two opposite parts. In order to reveal the reason for size effects on the springback behavior of H80 foils, the method of hardness increment characterization was applied to describe the deformation distribution of foils. The competition between strengthening effect of geometrically necessary dislocations and weakening effect of surface grains determines the change trend of springback amount with foil thickness. When the thickness of foils is large, the weakening effects dominate the material behavior, resulting in that the springback amount decreases with the decrease in foil thickness. However, when the foil thickness is small, the strengthening effects dominate the springback tendency, leading to a sharp increase in the springback amount. Furthermore, the deformation distribution is disturbed due to the enhanced effects of individual grain heterogeneity with the decrease in the thickness of foils, leading to the large scatter of springback angle after unloading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.