Abstract
Microplastics (MPs) are plastic fragments less than 5 mm, which may have adverse impacts on organisms. In this study, we investigated the impacts and mechanisms of polystyrene MPs (10 μm and 100 μm) and nanoplastics (NPs, 100 nm) with different concentrations (10 mg/kg and 100 mg/kg) in soil on the uptake of metal Cd and semi-metal As in earthworms, Eisenia fetida. MPs facilitated the accumulation of (semi-)metals via damaging the integrity of earthworm intestine, and earthworms accumulated more (semi-)metals in MP treatment groups than NP treatment groups, especially in group of 100 mg/kg of 10 μm MP with concentrations of 1.13 mg/kg and 32.7 mg/kg of Cd and As, respectively. Higher genotoxicity to earthworms was observed for MPs than NPs. Antioxidant enzymes activity and their mRNA gene relative expression levels indicated that MPs with high concentration induced severer damage to earthworms, thus resulting in the increased accumulation of (semi-)metals by earthworms. In addition, proteomic and metabolomic analysis revealed that MPs (100 ppm of 10 μm) disturbed the earthworm immune and metabolic systems, resulting in the highest accumulation of (semi-)metals in earthworms. This study clarifies the influence mechanisms of MPs with different sizes and levels on the accumulation of (semi-)metals by terrestrial invertebrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.