Abstract

Abstract This paper presents an effective plate formulation coupling the merits of isogeometric analysis (IGA) and a new non-classical simple first-order shear deformation theory (SFSDT) for static bending, free vibration, and buckling of functionally graded (FG) moderately thick microplates. In contrast to the conventional first-order shear deformation theory (FSDT), the new SFSDT adopted here inherently owns several advantages such as free from shear-locking, capturing the shear-deformation effect, and fewer unknowns. In order to capture the small scale effects, we thus introduce a non-classical SFSDT based on a modified couple stress theory. The requirement for C 2 -continuity in terms of the non-classical SFSDT is straightforwardly treated with the aid of inherent high-order continuity of non-uniform rational B-spline (NURBS), which serves as basis functions in our IGA framework. Numerical examples are presented and the obtained numerical results reveal that the deflection decreases while the frequency and buckling load increase with decreasing the plate thickness. Results also show that the small size effect can lead to an increase of microplate stiffness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.