Abstract

The present paper is concerned with the analysis of size effects in short fibre reinforced composites. The microstructure of such composites often represents the first hierarchy level of a bioinspired material. For modelling fibre cracking as well as debonding between fibre and matrix material, a fully three-dimensional cohesive zone model is applied. It is shown that this model indeed captures the size effect associated with material failure of a single fibre. Furthermore, this scaling effect strongly depends on the shape and orientation of the assumed pre-existing crack. For this reason, a two-dimensional description can usually only predict the size effect qualitatively. Based on the aforementioned findings, a representative volume element (RVE) containing ceramic fibres embedded within a polymer matrix is considered. Similar to the single fibre, the RVE also shows a pronounced size effect. However, the underlying physical process is significantly more complex. More explicitly, the size effect of the RVE is a superposition of that related to the isolated fibres as well as of that induced by debonding of the fibres from the matrix material. For estimating the different effects, a perfect bond is also modelled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.