Abstract

We fabricate and analyze InGaAs nanowire MOSFETs with channel widths down to 18 nm. Low-temperature measurements reveal quantized conductance due to subband splitting, a characteristic of 1D systems. We relate these features to device performance at room-temperature. In particular, the threshold voltage versus nanowire width is explained by direct observation of quantization of the first sub-band, i.e., band gap widening. An analytical effective mass quantum well model is able to describe the observed band structure. The results reveal a compromise between reliability, i.e., VT variability, and on-current, through the mean free path, in the choice of the channel material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call