Abstract
We report the first experimental evidence of size effects in the glass transition of thin films of an organic molecule grown from the vapor phase. In as-deposited films grown at 90 K (0.80Tg), both the fictive temperature, Tf, and the onset of the glass transition, Ton, decrease with thickness. The thinnest layers (∼4 nm) exhibit the highest thermodynamic and lowest kinetic stability. Films refrozen at 2000 K/s after being heated to the liquid state during a previous scan demonstrate no size effects. The width of the glass transition for both as-deposited and refrozen films is independent of the film thickness down to 4 nm. Our heat capacity data suggest that ultrathin vapor-deposited glasses transform into liquid by a faster dynamic influenced by the outer film surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.