Abstract

In this study, the dependence of sample size and light intensity on the fluorescence intermittency of semiconductor nanorods is investigated. We present a model with diffusion-controlled electron-transfer reactions involving anomalous diffusion in energy configuration space. This model leads to a general formula t(-m) exp[-(Gammat)n] for the temporal behavior of blinking statistics, where m and n are related to the time dependence of the spectral diffusion. We reanalyze the experimental data of the long-time bending tail of CdSe nanorods and elucidate the size effects of the bending rates and activation energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.