Abstract

The present paper provides a statistical model to the size effect on grained materials tensile strength; it is based on an Extreme Value Theory approach. Since the weakest link in grained materials is usually represented by the interface between the matrix and the aggregates, it is assumed that the flaw distribution can be represented by the aggregate distribution, expressed as a probability density function (pdf) of the grain diameters. Under the hypothesis that the strength of the material depends on the largest flaw, the tensile strength is computed as a function of the specimen size. In this way, two remarkable results are obtained: (i) a size effect for the average tensile strength that substantially agrees with the multifractal scaling law (MFSL) proposed by the first author and (ii) an increase of scatter of the tensile strength values when testing small specimens. Both these trends are confirmed by experimental data available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.