Abstract

The compressive behavior of hollow micropillars is modeled by three-dimensional discrete dislocation dynamics (3D-DDD). Computational results show that wall thickness is the principal geometrical parameter governing the compressive strength of these micropillars, while inner or outer diameter has a weak influence. This is because the plastic behavior is dominated by the single-arm dislocation sources with statistical lengths determined by the wall thickness. The single-arm source model is further extended to quantitatively describe this thickness effect, showing good agreement with the present 3D-DDD results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.