Abstract

The charge storage in an electrical double-layer capacitor is dependent on the accumulation of ions on the interface between electrolyte and conducting material and the spatial distribution of ions in electrolyte. In this work, we study the effect of local curvature on the concentration of ions on the interface between electrolyte and electrode from the framework of thermodynamics and incorporate the concentration of ions on the interface in the analysis of the spatial distribution of ions for symmetric binary electrolytes. Semi-analytical results of the integral electrical-double-layer capacitances per unit area under the condition of large Debye-Hückel constant are obtained for spherical particle and cylindrical rod, which reveal the contribution of interface energy between the conducting material and the electrolyte to the storage of charge. For spherical cavity and cylindrical pore at small electric potential, the solution of the electric potential for linearized Poisson-Boltzmann equation is used in the calculation of the integral electrical-double-layer capacitances per unit area, which are dependent on the sizes of the cavity and pore and independent of the interface energy between the conducting material and the electrolyte. For spherical cavity and cylindrical pore at large electric potential, the integral double-layer capacitances are dependent on the interface energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.