Abstract

Abstract We show in this paper that by applying size-effect distortions to a perfect Penrose tiling, on the basis that rhomb-edges which connect different types of vertices assume different lengths, we can obtain a diffraction pattern which shows remarkable similarity to the zero-level (h5 =0) section observed in decagonal Al71Co13Ni16. In particular a central clearly delineated decagon is observed, on the inside of which there is reduced intensity, and on the outside of which there is enhanced intensity. Such a transfer of intensity is characteristic of size-effect distortions in crystals but for these systems it is necessary to have disorder involving (at least) two types of atoms. In the present case the effect is observed with all vertices occupied by a single scatterer and the system remains topologically equivalent to the Penrose pattern with long range quasicrystallinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.