Abstract

New channels of desorption of excited atoms and molecules from clusters of argon, krypton, and xenon under electron bombardment are found by the method of vacuum ultraviolet emission spectroscopy. The maximum yield of particles is registered in the interval of average sizes of 50–100 atoms/cluster. The regularities and features of the desorption of excited particles are revealed, making it possible to establish a new desorption mechanism called nonradiative excimeric dissociation. It is shown that the main stages of this mechanism are: the formation of molecular centers of the nature of highly excited diatomic excimer molecules in clusters in the process of self-trapping of high-energy p excitons (n=1); the nonradiative dissociation of these molecules to excited atoms and atoms in the ground state with large kinetic energies. It is established that the appearance of new channels of desorption of excited atoms and molecules from clusters under bombardment by electrons is due to features of the physical properties of clusters in the interval of average sizes 50–100 atoms/cluster, in particular, to features of the energy spectrum, vibrational frequency spectrum of the atoms, and exciton energy relaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.