Abstract

A series of large-scale molecular dynamics simulations were carried out to investigate the interactions between an extended edge dislocation (1/2<112>{111}) and nanoscale domains in pure nickel. The pinning strength of nano-domains and the corresponding atomistic interaction mechanisms were found to be closely related to the domain boundary type, the domain size and spacing. The pinning strengths were found to be higher for high-angle domains than those for low-angle domains at the same size scale, and increase with increasing domain size and decreasing domain spacing. Unlike the by-pass via interactions between the dislocation and boundaries for high-angle domains (much like the role of hard precipitates in alloys), the dislocation was found to cut partly through the low-angle domains. Thus the dragging force from the boundary segments of the low-angle domains should be smaller when compared to the Orowan's strengthening for “hard particles”, such as high-angle domains. The predictions from Ashby's model on Orowan's strengthening are higher than the simulation data for low-angle domains, while agree relatively well with those for high-angle domains. Moreover, a more universal model was proposed to connect the dislocation line shape at the critical shear strain with the pinning strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.