Abstract

Although it is known that increases in ambient particulate matter (PM) levels are associated with elevated occurrence of adverse health outcomes, the understanding of the mechanisms of PM-related health effects is limited by our knowledge of how particle size and composition are altered subsequent to inhalation through respiratory-deposited processing. Here we present a particle-generated hydroxyl radical (·OH) study of the size-resolved particles as particles are inhaled in the human respiratory tract (RT), and we show that accumulation-mode particles are significant factors (71-75%) in ·OH generation of lung-deposited particles using Multiple-Path Particle Dosimetry (MPPD) model. The ability of PM to catalyze ·OH generation is mainly related to transition metals, particularly towards the upper regions of the RT (75%), and to quinones deeper in the lung (42-46%). Identification of this generation ability induced by chemical composition has shown that four potential sources (biomass burning, incomplete combustion, mobile & industry, and mineral dust) are responsible for ·OH generation. With ·OH-forming ability after PM inhalation implicated as the first step towards revealing the subsequent toxic processes, this work draws a connection between the detailed ·OH chemistry occurring on size-resolved particles and a possible toxicological mechanism based on chemical composition and sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.