Abstract

Any risk assessment of moisture-damaged buildings requires an accurate characterization of the factors contributing to the human exposure. In this study, the size distributions of indoor air viable fungi and bacteria and average mean diameters of the most common fungi in school buildings were determined. One special focus was to analyze how the microbial size distributions are affected by the building frame (either wooden or concrete) and moisture damage in the building. The study was performed in 32 school buildings classified as moisture-damaged (index) and non-damaged (reference) schools according to technical building investigations. Sampling for indoor air microbes was carried out using a cascade impactor that collects particles on six stages (range from 0.65 to >7 μm) according to their aerodynamic diameters. Both wooden and concrete schools had their highest fungal levels in the size range of 1.1–4.7 μm. However, the concentrations of fungi in all size classes were higher in wooden schools than in concrete schools. Moisture damage-associated differences in size distribution, in the particle size range of 1.1–2.1 μm, were seen in concrete schools but not in wooden schools. In general, the average geometric mean diameter ( d g,ave) of total viable fungi was smaller in wooden schools than in concrete schools, and smaller in index schools of both construction types than in their reference schools. Variation in particle size, however, by genus was observed. No differences in particle size distributions of viable airborne bacteria were found. Our results on the dependency of the particle size on the building type and presence of moisture damage provide an interesting point to be considered in assessing the complex issue of indoor-related bioaerosol exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.