Abstract
Size-fractionated samples were collected at five coastal urban sites in Fujian Province, southeast China, in 2016 and 2017 to determine the trace elements using ICP-MS. Ca, Fe, Al, Mg, and K were the most abundant elements among the studied elements in TSP, much higher than those of heavy metals. The annual mean concentrations of Pb, As, V, Ni, Cd, and Mn were within the acceptable limits of the World Health Organization and the Ministry of Ecology and Environment of China while Cr(VI) exceeded the limits. Most elements exhibited clear seasonal patterns with maxima over the cold season and minima over the warm season. The spatial variabilities in concentrations of the measured elements were not significant except Ni and V. However, the size distribution pattern of each element was quite similar across the region. Characteristic size distributions of elements allowed identification of three main groups: (a) unimodal distribution in the coarse fraction for Ca, Al, Mg, and Ba; (b) unimodal distribution in the fine fraction for Pb, Se, As, Ag, V, Ni, Zn, and Cd; and (c) bimodal or multimodal distribution for Fe, Mn, Cr, K, and Cu. The combination of the size-fractionated concentrations, enrichment factors, correlation coefficients, and factor analysis offered the identification of mixed sources such as vehicular exhaust and wear, heavy fuel oil combustion, and resuspension of road dust. Non-carcinogenic health risks associated with inhalable exposure to airborne metals were higher than the safety threshold (hazard index > 1) across the region, suggesting non-carcinogenic health risks via inhalation. Mn, V, and Ni contributed 74-83% of the total non-carcinogenic risk. The assessment investigation of carcinogenic health risks revealed V and Cr(VI) as elements with the largest carcinogenic risks, accounting for more than 95% of the overall inhalation risk. Nevertheless, the carcinogenic risks for children and adults were between 10-6 and 10-4, within the range considered acceptable by the US EPA. In terms of the size-fractionated risk, PM2.5 contributed 43-50% and 39-44% of the total non-carcinogenic and carcinogenic risks, respectively, indicating the potential health hazard of coarse particle-bound toxic metals was not negligible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.