Abstract

The size distribution of aerosols was measured near traffic intersections of Marol link road in air quality control region (AQCR1), which is a moderately industrial area and Dadar Khodad circle in AQCR2, which is a heavily commercial core of the Mumbai City. The reason behind selecting the two unidentical regions was to study the contribution from vehicles to the size separated PM10 and that of Pb. It is recognised that particulates in urban air are responsible for serious health effects. As very small particles are assumed to be important for the adverse health effects, the particle size distribution is thus an important factor that needs to be addressed whenever the particulates pollution is concerned. The size measurements were done with a cascade impactor of eight stages with a back-up filter. It effectively separates the particulate matter into nine-sizes ranging from 0.0-0.4 to 9.0-10.0 microm. Samples were analysed in nine-particle size fractions with special reference to a toxic metal - lead (Pb) by atomic absorption spectrophotometry (AAS). It was found that PM10 and Pb at both the intersections could easily be classified by the size distribution. The fractions of the PM10 and that of Pb showing a tendency of trimodal distributions with the first peak at coarse mode approximately 9.0-10.0 microm, second at approximately 5.8 microm and the third at coarse mode approximately1.1 microm. The significant percentage of Pb was found in the range below 2.5 microm at both the intersections. However, Pb in AQCR1 is found in the coarser range as well, which could probably be the influence of various industrial activities in the area. PM10 concentration values in the coarser range in AQCR2 are associated with the resuspension of dust particles and mechanical erosions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.