Abstract
In the manufacturing of nanometer-sized material particlulates by aerosol gas-to-particle conversion processes, it is important to analyze how the gas-phase chemical reaction, nucleation, agglomeration, and sintering rates control the size distribution and morphology of particles. In this study, titania particles were produced experimentally by the thermal decomposition of titanium tetraisopropoxide (TTIP) and oxidation of titanium tetrachloride (TiCl 4 ) using a laminar flow aerosol reactor. The effect of reaction temperature on the size and morphology of the generated particles was investigated under various conditions. The size distributions of agglomerates were measured using a DMA/CNC system. The size distributions of primary particles were measured using TEM pictures of the agglomerates sampled by a thermophoretic aerosol sampler. In order to model the growth of both agglomerates and primary particles simultaneously, a two-dimensional discrete-sectional representation of the size distribution was em...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.