Abstract
BackgroundSeasonal spatio-temporal variation in habitat quality and abiotic conditions leads to animals migrating between different environments around the world. Whereas mean population timing of migration is often fairly well understood, explanations for variation in migratory timing within populations are often lacking. Condition-dependent tradeoffs may be an understudied mechanism that can explain this differential migration. While fixed condition-specific thresholds have been identified in earlier work on ontogenetic niche shifts, they are rare in differential migration, suggesting that thresholds in such systems can shift based on temporally variable environmental conditions.MethodsWe introduced a model based on size-specific tradeoffs between migration and growth in seasonal environments. We focused on optimal migratory timing for first-time migrants with no knowledge of an alternative habitat, which is a crucial stage in the life history of migratory salmonids. We predicted that optimal timing would occur when individuals move from their natal habitats based on a seasonally variable ratio of predation and growth. When the ratio becomes slightly more favorable in the alternative habitat, migratory movement can occur. As it keeps shifting throughout the season, the threshold for migration is variable, allowing smaller individuals to move at later dates. We compared our model predictions to empirical data on 3 years of migratory movement of more than 800 juvenile trout of varying size from natal to feeding habitat.ResultsBoth our model and empirical data showed that large individuals, which are assumed to have a lower predation risk in the migratory habitat, move earlier in the season than smaller individuals, whose predicted predation-to-growth ratio shifted to being favorable only later in the migratory season. Our model also predicted that the observed difference in migratory timing between large and small migrants occurred most often at low values of growth differential between the two habitats, suggesting that it was not merely high growth potential but rather the tradeoff between predation and growth that shaped differential migration patterns.ConclusionsWe showed the importance of considering condition-specific tradeoffs for understanding temporal population dynamics in spatially structured landscapes. Rather than assuming a fixed threshold, which appears to be absent based on previous work on salmonids, we showed that the body-size threshold for migration changed temporally throughout the season. This allowed increasingly smaller individuals to migrate when growth conditions peaked in the migratory habitat. Our model illuminates an understudied aspect of predation as part of a condition-dependent tradeoff that shapes migratory patterns, and our empirical data back patterns predicted by this model.
Highlights
Seasonal spatio-temporal variation in habitat quality and abiotic conditions leads to animals migrating between different environments around the world
If our model and empirical data bear out these hypotheses, we suggest freshwater migration ecology should consider biotic interactions such as predation or competition along with classic physiological barriers such as temperature or salinity, i.e. environmental factors
(2019) 7:40 a b early Migration late high. This can be seen following the different ratios from the left term of eq (2) as Larger individuals have higher predation risk in the lake than the stream, yet the larger growth of the lake environment can compensate for the predation-growth tradeoff earlier than in smaller individuals, which have higher predation risk overall
Summary
Seasonal spatio-temporal variation in habitat quality and abiotic conditions leads to animals migrating between different environments around the world. Optimal migration theory suggests that timing is not determined solely by external, environmental factors, and by individual traits [7], and individuals in most populations do not migrate at the same time even when tracking the same type of resources [5, 8]. Individual traits such as body size can influence physiological abilities or other factors like predation risk, thereby changing the optimal time for departure [9, 10]. While previous work on habitat shifts has suggested fixed thresholds at which movement should occur in some systems [12], such thresholds seem absent in differential migration [13, 14]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.