Abstract

Vero cells were exposed to COD crystals of varying sizes at a concentration of 200 μg mL-1 for 6 h. The effects of COD crystals on Vero cell viability, apoptosis rate, and cellular biochemical parameters [lactate dehydrogenase (LDH), superoxide dismutase (SOD), reactive oxygen species (ROS), hyaluronic acid (HA), osteopontin (OPN), and mitochondrial membrane potential (Δψm)] were determined using biochemical and morphological analyses. Vero cell viability and apoptotic rate were closely associated with the size of COD crystals; lower cell viability and higher apoptosis rate were observed in cells exposed to smaller COD crystal size. The expression of SOD, ROS, HA and OPN also changed in a size-dependent manner after exposure to the five different sizes of COD crystals. The area ratio of the (100) face with a high density of Ca2+ ions to the total surface area was also found to influence the severity of cell injury. Cell injury induced by COD crystals was mainly caused by excessive expression of intracellular ROS and reduction of free-radical scavenger SOD. Moreover, binding of large crystals on the cell membrane surface takes more time to cause cell injury than internalized small-sized crystals. The cell death rate was found to be positively correlated with the amount of internalized COD crystals. although the COD toxicity is often disregarded, the size-dependent cytotoxicity of COD crystals toward Vero cells is demonstrated in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.