Abstract

Surface effect and crystal structure lead to formulating a theoretical model to study the influences of size on thermodynamic parameters, such as melting temperature, Debye temperature, melting entropy and specific heat capacity, of nanoparticles. The cohesive energy as a thermodynamic quantity was used to relate the ratio of surface area to volume of nanomaterial with thermodynamic properties which depend on size of the nanomaterial. In this contribution, Si and Au nanoparticles were considered to study due to their potential applications in science and technology. It was found that melting temperature, Debye temperature, melting entropy of nanoscale size material is decreased with decreasing the size up to their critical sizes. Whereas, the specific heat capacity tends to enhance with reduction in nanoparticle size. The present results for melting temperature, melting entropy and Debye temperature are compared with experimental and theoretical observations and adequate agreements are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.