Abstract

Neutral manganese oxide clusters with the general composition Mn2 N O3 N+x (N=2-22; x=-1, 0, 1) with dimensions up to a nanosize were prepared by laser ablation and reacted with C2 H4 in a fast flow reactor. The size-dependent reactivity of C2 H4 adsorption on these clusters was experimentally identified and the adsorption reactivity decreases generally with an increase of the cluster size. Density functional theory calculations were performed to study the geometrical and electronic structures of the Mn2 N O3 N (N=1-6) clusters. The calculated results indicated that the coordination number and the charge distribution of the metal centers are responsible for the experimentally observed size-dependent reactivity. The highly charged Mn atoms with low coordination are preferential to adsorb C2 H4 . In contrast, the neutral manganese oxide clusters are completely inert toward the saturated hydrocarbon molecule C2 H6 . This work provides new perspectives to design related materials in the separation of hydrocarbon molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.