Abstract

Radiative decay processes have been studied in graphene quantum dots (GQDs) by varying their size. The photoluminescence (PL) decay traces are well fitted to a biexponential function with lifetimes of τ1 and τ2, indicating their fast and slow components, respectively. The τ1 is almost constant, irrespective of the average GQD size (da) for two excitation wavelengths of 305 and 356 nm. In contrast, the τ2 decreases as da increases for da ≤ ∼17 nm, but da > ∼17 nm, it increases with increasing da for both the excitation wavelengths, similar to the size-dependent behaviors of the time-integrated PL peak energy. We propose that the τ1 and τ2 originate from size-independent fast band-to-band transition and size-dependent slow transition resulting from the edge-state variation at the periphery of GQDs, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call