Abstract

Photoluminescence (PL) from surface-oxidized Si nanocrystals (nc-Si) was studied as a function of the size. The size of nc-Si was comparable with or larger than the Bohr radius of free excitons in bulk Si crystal (5 nm). In contrast to smaller surface-oxidized nc-Si (typically as small as a few nanometers in diameter), these relatively large nc-Si exhibited PL properties with strong size dependence. A high-energy shift of the PL peak from the vicinity of the bulk band gap to the visible region was observed. This PL shift was accompanied by a shortening of the PL lifetime and an increase in the exchange splitting energy of excitons. These size dependences indicate that the PL originates from the recombination of excitons confined in nc-Si. The differences in the PL properties between H-terminated and surface-oxidized nc-Si are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.