Abstract
Prior research has highlighted the reduction of iron oxide nanoparticle (IONPs) sizes to the "ultra-small" dimension as a pivotal approach in developing T1-MRI contrast agents, and the enhancement in T1 contrast performance with the reducing size is usually attributed to the increased specific surface area and weakened magnetization. Nonetheless, as the size decreases, the variation in surface defects, particularly oxygen vacancy (VO) defects, significantly impacts the T1 imaging efficacy. In this study, the VO on IONPs is meticulously investigated through XPS, Raman, and EPR spectroscopy. As the nanoparticle size decreased, the VO concentration rose initially but subsequently declined, with the peak concentration observed in the size of 8.27nm. Further insights gained from synchrotron XAS analysis and DFT calculations indicate that both surface tension and phase transition in IONPs contribute to alterations in the Fe─O bond length, thereby influencing the VO formation energy across varying nanoparticle sizes. The MRI tests reveal that the VO in IONPs serve as pivotal sites for the attachment of water molecules to iron ions, and IONPs with fewer VO exhibited a deterioration in T1-MRI contrast effects. This research may provide a deeper understanding of the relationship between T1 contrast performance and the size of IONPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.