Abstract

We show explicitly the size-dependent chemical reactivity of hydrogenated silicon clusters reacting with water. A unique trend of decreasing reactivity with decreasing cluster size has been deduced from reaction energetics, frontier orbital analysis, and chemical reaction rates determined by the transition state theory in conjunction with ab initio calculations at Hartree–Fock and Møller–Plesset perturbation levels of theory, for water reaction with both dihydride and trihydride silicon configurations. This study indicates the possibility of fabricating stable hydrogenated silicon structures by reducing their size to nanometers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.