Abstract
The above-bandgap illumination of colloidal ZnO nanoparticles (NPs) in ethanol solutions is found to lead to reversible shifts of the absorption and photoluminescence (PL) excitation spectra, indicating charging of the nanoparticles with electrons. A rapid drop of deep-level PL intensity at the early stage of illumination is observed simultaneously with the splitting-off and growth of a new red-shifted near-band-edge PL band. Such a splitting of the near-bandgap PL band under illumination is observed for the first time and corroborates with the previous assumptions about the behavior of the NP ensemble emission upon gradual NPs’ charging with electrons. The possible relation between the new PL band and photoinduced charging of NPs with excess electrons is discussed on the basis of the dependence of the PL spectrum evolution and absorption band shift relaxation on the NP size and controllable access of oxygen during illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.