Abstract
Using simple wet chemical method at room temperature, zinc oxide (ZnO) nanoparticles embedded in polystyrene (PS) matrix were synthesized. The size of the ZnO nanoparticles could be varied by varying the precursor concentration, reaction time and stirring speed. Transparent films of ZnO/PS nanocomposites of thickness around 1μm were coated on ultrasonically cleaned glass substrates by spin coating. The optical absorptive nonlinearity in ZnO/PS nanocomposite films was investigated using open aperture Z-scan technique with nanosecond laser pulses at 532nm. The results indicate optical limiting type nonlinearity in the films due to two-photon absorption in ZnO. These films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The observed nonlinear absorption is strongly dependent on particle size and the normalized transmittance could be reduced to as low as 0.43 by the suitable choice of the ZnO nanoparticle size. These composite films can hence be used as efficient optical limiters for sensor protection. The much-pronounced nonlinear response of these composite films, compared to pure ZnO, combined with the improved stability of ZnO nanoparticles in the PS matrix offer prospects of application of these composite films in the fabrication of stable non-linear optical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.