Abstract

Defect engineering operated on metal oxides by chemical and structural modifications may strongly affect properties suitable for various applications such as photoelectrochemical behavior, charge transport, and luminescence. In this work, we report the tunable optical features observed in undoped monoclinic HfO2 nanocrystals and their dependence on the structural properties of the material at the nanoscale. Transmission electron microscopy together with X-ray diffraction and surface area measurements were used to determine the fine structural modifications, in terms of crystal growth and coalescence of crystalline domains, occurring during a calcination process in the temperature range from 400 to 1000 °C. The fit of the broad optical emission into spectral components, together with time-resolved photoluminescence, allowed us to identify the dual nature of the emission at 2.5 eV, where an ultrafast defect-related intrinsic luminescence (with a decay time of a few nanoseconds) overlaps with a slower emissi...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.