Abstract

We develop a phenomenological model for size-dependent anisotropic plastic deformation of colloidal nanoparticles under ion irradiation. We show that, at the nanoscale, nonhydrostatic capillary stresses drive radiation-induced Newtonian viscous flow, counteracting the stress state that initiates the anisotropic viscous strains in the high-temperature thermal spike region around the ion track. We present experimental data using colloidal silica nanoparticles in the $10--100\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ size range that show that the deformation is indeed strongly size dependent, in excellent agreement with the model. This work allows for the prediction of the ion-beam-induced shape modification of a whole range of nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.