Abstract
We use two pore-forming proteins, alpha-hemolysin and aerolysin, to compare the polymer size-dependence of ionic current block by two types of ethyleneglycol polymers: 1) linear and 2) 3-arm star poly(ethylene glycol), both applied as a polydisperse mixture of average mass 1kDa under high salt conditions. The results demonstrate that monomer size sensitivity, as known for linear PEGs, is conserved for the star polymers with only subtle differences in the dependence of the residual conductance on monomer number. To explain this absence of a dominant effect of polymer architecture, we propose that PEG adsorbs to the inner pore wall in a collapsed, salted-out state, likely due to the effect of hydrophobic residues in the pore wall on the availability of water for hydration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.