Abstract

Nanoplastics (NPs), as a type of newly emerging pollutant, are ubiquitous in various environmental systems, one of which is coexistence with organic pollutants in wastewater, potentially influencing the pollutants’ biodegradation. A knowledge gap exists regarding the influence of microbial consortium and NPs interactions on biodegradation efficiency. In this work, a 2,4-dichlorophenol (DCP) biodegradation experiment with presence of polystyrene nanoplastics (PS-NPs) with particle sizes of 100 nm (PS100) or 20 nm (PS20) was conducted to verify that PS-NPs had noticeable inhibitory effect on DCP biodegradation in a size-dependent manner. PS100 at 10 mg/L and 100 mg/L both prolonged the microbial stagnation compared to the control without PS-NPs; PS20 exacerbated greater, with PS20 at 100 mg/L causing a noticeable 6-day lag before the start-up of rapid DCP reduction. The ROS level increased to 1.4-fold and 1.8-fold under PS100 and PS20 exposure, respectively, while the elevated LDH under PS20 exposure indicated the mechanical damage to cell membrane by smaller NPs. PS-NPs exposure also resulted in a decrease in microbial diversity and altered the niches of microbial species, e.g., they decreased the abundance of some functional bacteria such as Brevundimonas and Comamonas, while facilitated some minor members to obtain more proliferation. A microbial network with higher complexity and less competition was induced to mediate PS-NPs stress. Functional metabolism responded differentially to PS100 and PS20 exposure. Specifically, PS100 downregulated amino acid metabolism, while PS20 stimulated certain pathways in response to more severe oxidative stress. Our findings give insights into PS-NPs environmental effects concerning microflora and biological degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.