Abstract

Abstract Electrostatic charging of particles of identical composition, but different sizes, is a poorly understood phenomenon that may be of importance in dust storms, generation of lightning, numerous technological applications involving solid particulates, and in the agglomeration of lunar dust and inter-stellar dust clouds. We show that under optical excitation, the relative magnitude of surface to volume de-excitation gives size-dependent electron and hole concentrations. The consequent differences in chemical potentials can lead to charge transfer between particles of different size. The direction of charge transfer, from large to small or vice versa, depends critically on the properties of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call