Abstract

Our study explored the size-dependent collection characteristics for micron-sized particles using several kinds of commercially available woven nylon net filters. The particle concentrations with and without the filter were compared to determine the filtration characteristics. The theoretical efficiencies based on a single-fiber theory and a hole model were also computed. Although the theoretical efficiencies were generally consistent with the experimental results, the non-uniformity of air velocity profile within a mesh hole, and a particle's detachment from or bounce off the filters, should be further investigated in future research. Overall, the present study revealed the size-fractionation capability of the nylon wire mesh filters for micron-sized particles from experimental and theoretical points of view. Unlike impactors, the size-fractionation characteristics of the nylon wire mesh filter were determined by particle size, mesh fiber diameter, and a combination of different particle collection mechanisms including impaction, interception, and gravitational settling. Each mechanical process appears interdependently governed in part by the filter dimensions such as filter mesh size (diameter of opening) as well as related variables such as packing density and fiber diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.