Abstract
Presented herein is the prediction of buckling behavior of size-dependent microbeams made of functionally graded materials (FGMs) including thermal environment effect. To this purpose, strain gradient elasticity theory is incorporated into the classical third-order shear deformation beam theory to develop a non-classical beam model which contains three additional internal material length scale parameters to consider the effects of size dependencies. The higher-order governing differential equations are derived on the basis of Hamilton’s principle. Afterward, the size-dependent differential equations and related boundary conditions are discretized along with commonly used end supports by employing generalized differential quadrature (GDQ) method. A parametric study is carried out to demonstrate the influences of the dimensionless length scale parameter, material property gradient index, temperature change, length-to-thickness aspect ratio and end supports on the buckling characteristics of FGM microbeams. It is revealed that temperature change plays more important role in the buckling behavior of FGM microbeams with higher values of dimensionless length scale parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.