Abstract
Mechanisticapproachestoplanktonfood-websoftenrelyonsize-basedmodels.Thesemodelsdescribe predator–preyrelationshipsbasedonpredator body or cell size. However, size-based representations of trophic relationships fail to encompass the diverse feeding behavior of dinoflagellates, which play an essential role in the food-web due to their abundance and ubiquity. Here, we introduce the specialization factor (s) as an effective trait, which aggregates over aspects of morphology, trophic strategy, and feeding behavior and quantifies the degree of specialization towards a specific prey size. We found that specialization to either the upper or lower edge of the prey size spectrum is connected to size independent trophic relations. As a result, dinoflagellates can be divided into three groups with distinct dependencies of optimal prey size on predator size: (1) mixotrophic engulfers specialized on small prey (s=-1), (2) pallium feeders on large prey (s=1), and (3) neutral feeders (s=0) encompassing generalist engulfers and tube feeders. Our trait based approach elucidates the evolutionary significance of diverse feeding modes and specialization in dinoflagellates compared to phylogenetically older groups such as ciliates. It furthermore leads to a more accurate representation of trophic relationships of dinoflagellates in models and can provide, more generally, an efficient description of complex and diverse feeding relations in plankton food-webs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.