Abstract

Bifunctional oxygen electrocatalysts play a vital role in important energy conversion and storage devices. Cost-effective, abundant, and active Co-based materials have emerged as promising bifunctional electrocatalysts for which identifying catalytically active structures under reaction conditions and unraveling the structure–activity relationships are of critical importance. Here, we report the size-dependent (3–10 nm) structure and catalytic activity of bifunctional cobalt oxide nanoparticle (CoOx NP) catalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In situ X-ray absorption spectroscopy (XAS) revealed that the majority of NPs during OER and ORR were composed of the Co3O4 and CoOOH phases regardless of their particle sizes. The OER activity increased with decreasing NP size, which correlated to the increased oxidation state and larger surface area in smaller NPs, whereas the ORR activity was nearly independent of NP size. These particle size-dependent catalytic a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.