Abstract
Understanding the accurate acidity of nano-aerosols is important for the research on atmospheric chemistry. Herein, we propose the contributions from both the aerosol size and multiphase buffer effect to the steady-state acidity of nano-aerosols at a constant aerosol water content (AWC) through molecular simulations. As increasing of the aerosol size, the solvation free energy (SFE, ΔGs) became more negative (decreasing by 3-130 kcal mol-1 for different types of species) and Henry's law constant (H) apparently increased (from e6 to e16 mol m-3 Pa-1) in the nano-aerosols compared to that in bulk solutions. The lower SFE led to lower solute pKa and pKb values; thus, the acidity of HSO4- and HNO3 and the alkalinity of NH3 showed positive relations with the aerosol size. The lower H also increased the pKa of gaseous solutes, leading to a decrease in the acidity of HNO3 and a shift from alkaline to acidic for the NH4+/NH3 buffer pair in the nano-aerosols. The present study revealed the relationship between aerosol acidity and solvent size from a microscopic perspective. Specifically, the acidity of aerosols containing HSO4-/SO42- and HNO3/NO3- decreased with an increase in their radii, whereas aerosols containing NH4+/NH3 exhibited an opposite trend. This phenomenon can be attributed to the disappearance of the interfacial effect with an increase in the size of the aerosols. The above conclusions are of great significance for studying the pH-dependent multi-phase chemical processes in aerosols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.