Abstract

Size dependence of vacancy migration energy in ionic nano particles is investigated by analysis of potential energy surfaces in potassium chloride clusters. Numerical methods are used to find almost all local minima and transition states for vacancy migration in clusters of different sizes, and reveal characteristic features of energy surface structure. It is shown that migration energy is significantly lower near a cluster surface than near a cluster core, and the mean first-passage time for migration of a vacancy decreases with cluster size. These results are consistent with observations of high diffusion rates in small clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call