Abstract

The authors use first-principles pseudopotential-based density functional theory calculations of phonon dispersions to determine the size dependence of thermal properties of armchair single wall carbon nanotubes (SWCNTs), such as their negative thermal expansion and specific heat. While the specific heat is found to depend rather weakly on the diameter of SWCNTs, their negative thermal expansion behavior determined within a quasiharmonic approximation (QHA) exhibits a relatively strong dependence on the diameter. They identify the low energy vibrational modes that are responsible for the negative thermal expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.