Abstract

The heat capacity of a 13 nm hematite (α-Fe 2O 3) sample was measured from T = (1.5 to 350) K using a combination of semi-adiabatic and adiabatic calorimetry. The heat capacity was higher than that of the bulk which can be attributed to the presence of water on the surface of the nanoparticles. No anomaly was observed in the heat capacity due to the Morin transition and theoretical fits of the heat capacity below T = 15 K show a small T 3 dependence (due to lattice contributions) with no T 3/2 dependence. This suggests that there are no magnetic spin-wave contributions to the heat capacity of 13 nm hematite. The use of a large linear term to fit the heat capacity below T = 15 K is most likely due to superparamagnetic contributions. A small anomaly within the temperature range (4 to 8) K was attributed to the presence of uncompensated surface spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.