Abstract

An appropriate diameter and wire-to-wire distance is critical for optimizing the performance of hybrid inorganic/organic photovoltaic devices. For a deep understanding of their influences on such hybrid structures, the well-ordered ZnO nanowires with different diameters are fabricated by the versatile hydrothermal growth. The dependence of the photovoltaic performance on the surface states, wire diameter and wire-to-wire distance is investigated. We demonstrate that the pristine thick ZnO nanowires film possess a higher surface photovoltage (SPV) response than the thin one. This is mainly due to the influence of surface states on the thin ZnO nanowires, which can capture the photo-generated carriers. When the two kinds of ZnO nanowires are fabricated into a hybrid inorganic/organic structure, the thin ZnO nanowires/poly(3-hexylthiophene) hybrid film has a higher SPV response than the thick one, which is contrary to the pristine ZnO nanowires. This is benefited from the smaller diameter and wire-to-wire distance of the thin ZnO nanowires owned. The crystallinity, wire diameter and wire-to-wire distance have the crucial influence on the final photovoltaic performance. The results shown here give us insights toward designing efficient hybrid photovoltaic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call