Abstract

We investigate the catalytic properties of water-soluble Aun(SG)m nanocluster catalysts (H-SG = glutathione) of different sizes, including Au15(SG)13, Au18(SG)14, Au25(SG)18, Au38(SG)24, and captopril-capped Au25(Capt)18 nanoclusters. These Aun(SR)m nanoclusters (SR represents thiolate generally) are used as homogeneous catalysts (i.e., without supports) in the chemoselective hydrogenation of 4-nitrobenzaldehyde (4-NO2PhCHO) to 4-nitrobenzyl alcohol (4-NO2PhCH2OH) with ∼100% selectivity in water using H2 gas (20 bar) as the hydrogen source. These nanocluster catalysts, except Au18(SG)14, remain intact after the catalytic reaction, evidenced by UV–vis spectra, which are characteristic of nanoclusters of each size and thus serve as spectroscopic “fingerprints”. We observe a drastic size dependence and steric effect of protecting ligands on the gold nanocluster catalysts in the hydrogenation reaction. Density functional theory (DFT) modeling of the 4-nitrobenzaldehyde adsorption shows that both the -CHO and -NO2 groups closely interact with the S-Au-S staples on the gold nanocluster surface. The adsorptions of the 4-nitrobenzaldehyde molecule on the four different sized Aun(SR)m nanoclusters are moderately strong and similar in strength. The DFT results suggest that the catalytic activity of the Aun(SR)m nanoclusters is primarily determined by the surface area of the Au nanocluster, consistent with the observed trend of the conversion of 4-nitrobenzaldehyde versus the cluster size. Overall, this work offers molecular insight into the hydrogenation of 4-nitrobenzaldehyde and the catalytically active site structure on gold nanocluster catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.