Abstract
A series of hexagonal mesoporous germanium semiconductors with tunable wall thickness is reported. These nanostructures possess uniform pores of 3.1-3.2 nm, wall thicknesses from 1.3 to 2.2 nm, and large internal BET surface area in the range of 404-451 m(2)/g. The porous Ge framework of these materials is assembled from the templated oxidative self-polymerization of (Ge(9))(4-) Zintl clusters. Total X-ray scattering analysis supports a model of interconnected deltahedral (Ge(9))-cluster forming the framework and X-ray photoelectron spectroscopy indicates nearly zero-valence Ge atoms. We show the controllable tuning of the pore wall thickness and its impact on the energy band gap which increases systematically with diminishing wall thickness. Furthermore, there is room temperature photoluminescence emission which shifts correspondingly from 672 to 640 nm. The emission signal can be quenched via energy transfer with organic molecules such as pyridine diffusing into the pores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.