Abstract

Morphological traits typically scale with the overall body size of an organism. A meaningful comparison of trait values among individuals or populations that differ in size therefore requires size correction. A frequently applied size correction method involves subjecting the set of n morphological traits of interest to (common) principal component analysis [(C)PCA], and treating the first principal component [(C)PC1] as a latent size variable. The remaining variation (PC2-PCn) is considered size-independent and interpreted biologically. I here analyze simulated data and natural datasets to demonstrate that this (C)PCA-based size correction generates systematic statistical artifacts. Artifacts arise even when all traits are tightly correlated with overall size, and they are particularly strong when the magnitude of variance is heterogeneous among the traits, and when the traits under study are few. (C)PCA-based approaches are therefore inappropriate for size correction and should be abandoned in favor of methods using univariate general linear models with an adequate independent body size metric as covariate. As I demonstrate, (C)PC1 extracted from a subset of traits, not themselves subjected to size correction, can provide such a size metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.