Abstract

Noble-metal-free functional oxides are active catalysts for CO oxidation at low temperatures. Spinel-type cobalt oxide (Co3O4) nanoparticles can be easily synthesized by impregnation of activated carbon with concentrated cobalt nitrate and successive carbon burn off. Mean size and particle size distribution can be tuned by adding small amounts of silica to the carbon precursor, as witnessed by whole powder pattern modeling of the X-ray powder diffraction data. The catalytic tests performed after silica removal show a significant influence of the mean domain size and of size distribution on the CO oxidation activity of the individual Co3O4 specimens, whereas defects play a less important role in the present case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.