Abstract

This article describes a surfactant-assisted approach to the size-controlled synthesis of uniform nanorods of trigonal tellurium (t-Te). These nanorods were grown from a colloidal dispersion of amorphous Te (a-Te) and t-Te nanoparticles at room temperature, which was first formed through the reduction of (NH4)2TeS4 by Na2SO3 in aqueous solution at 80 degrees C. Nuclei formed in the reduction process had a strong tendency to grow along the [001] direction due to the inherently anisotropic structure of t-Te. The formation of Te nanorods could be ascribed to the confined growth through the surfactant adsorbing on the surfaces of the growing Te particles. By employing various surfactants in the synthesis system, Te nanorods with well-controlled diameters and lengths could be reproducibly produced by this method. Both the diameters and lengths of nanorods decreased with the increase of the alkyl length and the polarity of the surfactants. Te nanorods could also be obtained in mixed surfactants, where the different surfactants were used to selectively control the growth rates of different crystal planes. We also observed that the as-synthesized nanorods with uniform size could be self-assembled into large-area smecticlike arrays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call